Question 13
(原文)
(中譯)
Solution
因為$\alpha, \beta$相異,所以可以假設$\alpha < \beta$,於是$-\frac{\pi}{2} \le \alpha < \beta \le \frac{\pi}{2}$,故$\alpha$與$\beta$不可能是同界角。
我們可得$a, b$同號,且
(原文)
(中譯)
因為$\alpha, \beta$相異,所以可以假設$\alpha < \beta$,於是$-\frac{\pi}{2} \le \alpha < \beta \le \frac{\pi}{2}$,故$\alpha$與$\beta$不可能是同界角。
我們可得$a, b$同號,且
朋友Dora Wang傳來一道題目:
若$12\log_{n} 144$為正整數,則符合條件的正整數n的個數有幾個?
抱怨她學校老師的解法根本不是人想得到的,很機掰。
下面我嘗試給出一個比較「正常人可以想到」、「不機掰」的做法。
附:學校老師給的解法
紅筆部分第二行、第二個等號的分母,想法確實有點跳。我很不欣賞!就是這樣的老師與解法,才讓學生們感到「數學很困難」、「數學不是人想的」。
[Difficult] Ball A is dropped from rest from a building of height H exactly when ball B is thrown up vertically. When they collide A has double the speed of B. If the collision occurs at height h what is h/H?
Hint: Write equations for heights $y_A, y_B$ and velocities $v_A$ and $v_B$. What can you say about these at the time of the collision?
[難題] 球A從高度為H的建築物自由落下之際,地面上的球B正好同時垂直上拋。 兩球在高度h的位置相撞,撞擊時A的速率是B的兩倍,則h/H是多少?
提示:分別對高度$y_A, y_B$以及速度$v_A$和$v_B$寫出方程式。在發生碰撞時,你有什麼結論?
定義:若某個n次單位根所有正整數乘冪中,可化為1的最小次數為n,則稱該單位根為本原單位根(primitive)。
規約:$R = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$。(式(7),第10節)
事實:1的所有n次單位根有:$R, R^2, \cdots, R^n$。(第10節)
定理:1的n次單位根$R, R^2, \cdots, R^n$中,$R^k$為本原單位根若且唯若指數k與n互質。
1. Show that the primitive cube roots of unity are $\omega$ and $\omega^2$.
2. For $R$ given by (7), prove that the primitive nth roots of unity are
3. When n is a prime, prove that any nth root of unity, other than 1, is primitive.
4. Let $R$ be a primitive nth root (7) of unity, where n is a product of two different primes p and q. Show that $R, \cdots, R^n$ are primitive with the exception of $R^p, R^{2p}, \cdots, R^{qp}$, whose qth power are unity, and $R^q, R^{2q}, \cdots, R^{pq}$, whose pth power are unity. These two sets of exceptions have only $R^{qp}$ in common. Hence there are exactly $pq - p - q + 1$ primitive nth roots of unity.
5. Find the number of primitive nth roots of unity if n is a square of a prime p.
6. Extend Ex. 4 to the case in which n is a product of three distinct primes.
7. If $R$ is a primitive 15th root (7) of unity, verify that $R^3, R^5, R^9, R^{12}$ are the primitive fifth roots of unity, and $R^5$ and $R^{10}$ are the primitive cube roots of unity. Show that their eight products by pairs give all the primitive 15th roots of unity.
8. If $\rho$ is any primitive nth root of unity, prove that $\rho, \rho^2, \cdots, \rho^n$ are distinct and give all the nth roots of unity. Of these show that $\rho^k$ is a primitive nth root of unity if and only if k is relatively prime to n.
9. Show that the six primitive 18th roots of unity are the negative of the primitive ninth roots of unity.
1. $n = 3, R = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}, \omega = R = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}, \omega = R$。由定理可知,本原單位根有$R^1, R^2$,亦即$\omega, \omega^2$。
3. 不小於質數p而與質數p互質的數有$p - 1$個。
8. 因為$\rho$是本原單位根,所以存在正整數a滿足$1 \le a \le n$且$\gcd (a, n) = 1$使得$\rho = R^a$,其中$R = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$。
於是$\{ \rho, \rho^2, \cdots, \rho^n \} = \{ R^a, R^{2a}, \cdots, R^{na} \}$。任取兩相異正整數$k, j$滿足$1 \le k < j \le n$。若$\rho^j = \rho^k$,即$R^{ja} = R^{ka}$,則有$\cos \frac{2ja\pi}{n} + i \sin \frac{2ja\pi}{n} = \cos \frac{2ka\pi}{n} + i \sin \frac{2ka\pi}{n}$。因此$\frac{2ja\pi}{n}$與$\frac{2ka\pi}{n}$為同界角,得$j - k$為n的倍數。然而$1 \le j-k \le n$,所以$j - k$不可能是n的倍數。這意味著$R^a, R^{2a}, \cdots, R^{na}$完全相異。
因$\left( \rho^k \right)^n = \left( \rho^n \right)^k = 1^k = 1$,所以$\{ \rho, \rho^2, \cdots, \rho^n \}$是1的n次單位根。
假定$\rho^k$是本原根,由前文$\rho$與$R$的關係,得$R^{ak}$是本原根。再由定理可知$\gcd (ak, n) = 1$。因為$\gcd (a, n) = 1$,所以$\gcd (k, n) = 1$。
假定k與n互質,則$\gcd (ak, n) = 1$,故$R^{ak}$是本原根,即$\rho^k$是本原根。
9. $n = 18$,與18互質的數有1, 5, 7, 11, 13, 17。取$R_{18} = \cos \frac{2\pi}{18} + i \sin \frac{2\pi}{18}$。
$n = 9$,與9互質的數有1, 2, 4, 5, 7, 8。取$R_{9} = \cos \frac{2\pi}{9} + i \sin \frac{2\pi}{9}$。
觀察幅角,有
所以互為相反數。
问题 2 三元一次线性方程组$$\left\{ \begin{eqnarray*} a_{11} x_1 +a_{12} x_2 + a_{13} x_3 &=&b_1 \\ a_{21} x_1 +a_{22} x_2 + a_{23} x_3 &=&b_2 \\ a_{31} x_1 +a_{32} x_2 + a_{33} x_3 &=&b_3 \end{eqnarray*} \right.$$
有唯一解, 求解的表达式.这个问题稍微复杂了一点, 可以利用消元法化为二元一次方程组, 不过我更喜欢利用二元情形的结论: 把$x_1$看作已知的, 利用后两个方程求出$x_2, x_3$ (用二阶行列式来表达), 再代入第一个方程解出$x_1$. $x_1$的表达式是一个分式, 分子分母有共性, 引入三阶行列式就更能看出整齐性, 甚至猜出了三元情形的 Cramer 法则.
G. Cramer (1704-1752) |
Cramer法則首次的公開是在此書的附錄 |
紅線框起的部分就是2階線性方程組的Cramer法則,只是當年沒有採用行列式記號。下面跟著的是3階的情況。 |