Question 13
(原文)
(中譯)
Solution
因為α,β相異,所以可以假設α<β,於是−π2≤α<β≤π2,故α與β不可能是同界角。
我們可得a,b同號,且
(原文)
(中譯)
因為α,β相異,所以可以假設α<β,於是−π2≤α<β≤π2,故α與β不可能是同界角。
我們可得a,b同號,且
朋友Dora Wang傳來一道題目:
若12logn144為正整數,則符合條件的正整數n的個數有幾個?
抱怨她學校老師的解法根本不是人想得到的,很機掰。
下面我嘗試給出一個比較「正常人可以想到」、「不機掰」的做法。
附:學校老師給的解法
紅筆部分第二行、第二個等號的分母,想法確實有點跳。我很不欣賞!就是這樣的老師與解法,才讓學生們感到「數學很困難」、「數學不是人想的」。
[Difficult] Ball A is dropped from rest from a building of height H exactly when ball B is thrown up vertically. When they collide A has double the speed of B. If the collision occurs at height h what is h/H?
Hint: Write equations for heights yA,yB and velocities vA and vB. What can you say about these at the time of the collision?
[難題] 球A從高度為H的建築物自由落下之際,地面上的球B正好同時垂直上拋。 兩球在高度h的位置相撞,撞擊時A的速率是B的兩倍,則h/H是多少?
提示:分別對高度yA,yB以及速度vA和vB寫出方程式。在發生碰撞時,你有什麼結論?
定義:若某個n次單位根所有正整數乘冪中,可化為1的最小次數為n,則稱該單位根為本原單位根(primitive)。
規約:R=cos2πn+isin2πn。(式(7),第10節)
事實:1的所有n次單位根有:R,R2,⋯,Rn。(第10節)
定理:1的n次單位根R,R2,⋯,Rn中,Rk為本原單位根若且唯若指數k與n互質。
1. Show that the primitive cube roots of unity are ω and ω2.
2. For R given by (7), prove that the primitive nth roots of unity are
3. When n is a prime, prove that any nth root of unity, other than 1, is primitive.
4. Let R be a primitive nth root (7) of unity, where n is a product of two different primes p and q. Show that R,⋯,Rn are primitive with the exception of Rp,R2p,⋯,Rqp, whose qth power are unity, and Rq,R2q,⋯,Rpq, whose pth power are unity. These two sets of exceptions have only Rqp in common. Hence there are exactly pq−p−q+1 primitive nth roots of unity.
5. Find the number of primitive nth roots of unity if n is a square of a prime p.
6. Extend Ex. 4 to the case in which n is a product of three distinct primes.
7. If R is a primitive 15th root (7) of unity, verify that R3,R5,R9,R12 are the primitive fifth roots of unity, and R5 and R10 are the primitive cube roots of unity. Show that their eight products by pairs give all the primitive 15th roots of unity.
8. If ρ is any primitive nth root of unity, prove that ρ,ρ2,⋯,ρn are distinct and give all the nth roots of unity. Of these show that ρk is a primitive nth root of unity if and only if k is relatively prime to n.
9. Show that the six primitive 18th roots of unity are the negative of the primitive ninth roots of unity.
1. n=3,R=cos2π3+isin2π3,ω=R=cos2π3+isin2π3,ω=R。由定理可知,本原單位根有R1,R2,亦即ω,ω2。
3. 不小於質數p而與質數p互質的數有p−1個。
8. 因為ρ是本原單位根,所以存在正整數a滿足1≤a≤n且gcd(a,n)=1使得ρ=Ra,其中R=cos2πn+isin2πn。
於是{ρ,ρ2,⋯,ρn}={Ra,R2a,⋯,Rna}。任取兩相異正整數k,j滿足1≤k<j≤n。若ρj=ρk,即Rja=Rka,則有cos2jaπn+isin2jaπn=cos2kaπn+isin2kaπn。因此2jaπn與2kaπn為同界角,得j−k為n的倍數。然而1≤j−k≤n,所以j−k不可能是n的倍數。這意味著Ra,R2a,⋯,Rna完全相異。
因(ρk)n=(ρn)k=1k=1,所以{ρ,ρ2,⋯,ρn}是1的n次單位根。
假定ρk是本原根,由前文ρ與R的關係,得Rak是本原根。再由定理可知gcd(ak,n)=1。因為gcd(a,n)=1,所以gcd(k,n)=1。
假定k與n互質,則gcd(ak,n)=1,故Rak是本原根,即ρk是本原根。
9. n=18,與18互質的數有1, 5, 7, 11, 13, 17。取R18=cos2π18+isin2π18。
n=9,與9互質的數有1, 2, 4, 5, 7, 8。取R9=cos2π9+isin2π9。
觀察幅角,有
所以互為相反數。
问题 2 三元一次线性方程组{a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2a31x1+a32x2+a33x3=b3
有唯一解, 求解的表达式.这个问题稍微复杂了一点, 可以利用消元法化为二元一次方程组, 不过我更喜欢利用二元情形的结论: 把x1看作已知的, 利用后两个方程求出x2,x3 (用二阶行列式来表达), 再代入第一个方程解出x1. x1的表达式是一个分式, 分子分母有共性, 引入三阶行列式就更能看出整齐性, 甚至猜出了三元情形的 Cramer 法则.
![]() |
G. Cramer (1704-1752) |
![]() |
Cramer法則首次的公開是在此書的附錄 |
![]() |
紅線框起的部分就是2階線性方程組的Cramer法則,只是當年沒有採用行列式記號。下面跟著的是3階的情況。 |