==問題==
令$\sigma_1 = \left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \sigma_2 = \left[ \begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right], \sigma_3 = \left[ \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]$,求證:(i) $\sigma_1, \sigma_2, \sigma_3$為Hermite矩陣。
(ii) $\sigma_1 \sigma_1 = I, \sigma_2 \sigma_2 = I, \sigma_3 \sigma_3 = I$。
(iii) $\sigma_1 \sigma_2 = i \sigma_3, \sigma_2 \sigma_3 = i \sigma_1, \sigma_3 \sigma_1 = i \sigma_2$。
$\sigma_1, \sigma_2, \sigma_3$稱為Pauli矩陣。
==解答==
(i) 首先確認2階Hermite矩陣的形式。設${\rm A} = \left[ \begin{array}{cc} z_{11} & z_{12} \\ z_{21} & z_{22} \end{array} \right]$,其中$z_{11}, z_{12}, z_{21}, z_{22} \in \mathbb{C}$。
若${\rm A}$為Hermite矩陣,則意味著${\rm A}$滿足
$${\rm A}^{\dagger} = {\rm A}.$$
其中${\rm A}^{\dagger} = \left( \left[ \begin{array}{cc} z_{11} & z_{12} \\ z_{21} & z_{22} \end{array} \right]^* \right)^{\rm T} = \left( \left[ \begin{array}{cc} \bar{z_{11}} & \bar{z_{12}} \\ \bar{z_{21}} & \bar{z_{22}} \end{array} \right] \right)^{\rm T} = \left[ \begin{array}{cc} \bar{z_{11}} & \bar{z_{21}} \\ \bar{z_{12}} & \bar{z_{22}} \end{array} \right]$,於是有
$$\left[ \begin{array}{cc} \bar{z_{11}} & \bar{z_{21}} \\ \bar{z_{12}} & \bar{z_{22}} \end{array} \right] = \left[ \begin{array}{cc} z_{11} & z_{12} \\ z_{21} & z_{22} \end{array} \right].$$
從而得到
$$\bar{z_{11}} = z_{11}, \bar{z_{21}} = z_{12}, \bar{z_{12}} = z_{21}, \bar{z_{22}} = z_{22}.$$
所以$z_{11}, z_{22}$皆為實數,而$z_{12}$與$z_{21}$互為共軛複數(因此實部相同)。
總結上述,我們可以得到:${\rm A} = \left[ \begin{array}{cc} z_{11} & z_{12} \\ z_{21} & z_{22} \end{array} \right]$為Hermite矩陣,若且唯若${\rm A}$形如
$${\rm A} = \left[ \begin{array}{cc} a & p+qi \\ p-qi & b \end{array} \right], a, b, p, q \in \mathbb{R}.$$
(主對角線元素為實數,副對角線元素為共軛複數對)
現在回頭來判定Pauli矩陣是否為Hermite矩陣。
顯然$\sigma_1, \sigma_2, \sigma_3$都是Hermite矩陣。
(ii) 直接計算。
$\sigma_1 \sigma_1 = \left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] = I.$
注意對矩陣$\left[ \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$左乘$\sigma_1 = \left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$的效果相當於「交換1st row與2nd row」,因此可以利用此性質立刻寫出$\sigma_1 \sigma_1$的乘積。
$\sigma_2 \sigma_2 = \left[ \begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right] \left[ \begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right] = i \left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] \left[ \begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right] = i \left[ \begin{array}{cc} -i & 0 \\ 0 & -i \end{array} \right] = \left[ \begin{array}{cc} -i^2 & 0 \\ 0 & -i^2 \end{array} \right] = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] = I.$
這裡一樣使用了基本矩陣(Elementary matrix)的性質。對矩陣$\left[ \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$左乘$\left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]$的效果相當於「先將2nd row的元素添上負號後,再與1st row交換」。
$\sigma_3 \sigma_3 = \left[ \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right] \left[ \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right] = \left[ \begin{array}{cc} 1 & 0 \\ -0 & -(-1) \end{array} \right] = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] = I.$
這裡一樣使用了基本矩陣(Elementary matrix)的性質。對矩陣$\left[ \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$左乘$\left[ \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]$的效果相當於「將2nd row的元素添上負號」。
(iii) 與(ii)相同,直接計算,但一樣使用基本矩陣的性質來化簡計算量。
$\sigma_1 \sigma_2 = \left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \left[ \begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right] = \left[ \begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right] = i \left[ \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right] = i \sigma_3$。
$\sigma_2 \sigma_3 = \left[ \begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right] \left[ \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right] = i \left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] \left[ \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right] = i \left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] = i \sigma_1$。
$\sigma_3 \sigma_1 = \left[ \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right] \left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] = \left[ \begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right] = \left[ \begin{array}{cc} 0 & -i^2 \\ i^2 & 0 \end{array} \right] = i \left[ \begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right] = i \sigma_2$。
(解答結束)
沒有留言:
張貼留言