2022年1月21日 星期五

111學測數學A的快篩三採陰問題

==問題== 

已知某地區有 30%的人口感染某傳染病。針對該傳染病的快篩試劑檢驗,有陽性或陰性兩結果。已知該試劑將染病者判為陽性的機率為 80%,將未染病者判為陰性的機率則為60%。為降低該試劑將染病者誤判為陰性的情況,專家建議連續採檢三次。若單次採檢判為陰性者中,染病者的機率為 $P$;而連續採檢三次皆判為陰性者中,染病者的機率為 $P'$。試問$\frac{P}{P'}$最接近哪一選項?

(1) 7    (2) 8    (3) 9    (4) 10    (5) 11 

==解答==

首先整理題目資訊。

  • 「有 30%的人口感染某傳染病」$\Rightarrow P(\text{有病}) = 30\% = \frac{3}{10} \Rightarrow P(\text{無病}) = 1 - \frac{3}{10} = \frac{7}{10}$。
  • 「將染病者判為陽性的機率為 80%」$\Rightarrow P(\text{陽} \mid \text{有病}) = 80\% = \frac{8}{10} \Rightarrow P(\text{陰} \mid \text{有病}) = 1 - \frac{8}{10} = \frac{2}{10}$。
  • 「將未染病者判為陰性的機率則為60%」$\Rightarrow P(\text{陰} \mid \text{無病}) = 60\% = \frac{8}{10} \Rightarrow P(\text{陽} \mid \text{無病}) = 1 - \frac{6}{10} = \frac{4}{10}$。

於是根據條件機率定義得

$$\begin{align*}P(\text{有病} \mid \text{陰}) &= \frac{P(\text{有病} \cap \text{陰})}{P(\text{陰})}  \\ &= \frac{P(\text{有病}) \times P(\text{陰} \mid \text{有病})}{P(\text{有病}) \times P(\text{陰} \mid \text{有病}) + P(\text{無病}) \times P(\text{陰} \mid \text{無病})} \\ &= \frac{\frac{3}{10} \times \frac{2}{10}}{\frac{3}{10} \times \frac{2}{10} + \frac{7}{10} \times \frac{6}{10}} \\ &= \frac{1}{8}. \end{align*}$$

接下來計算三採陰的機率。

$$\begin{align*}P(\text{有病} \mid \text{三採陰}) &= \frac{P(\text{有病} \cap \text{三採陰})}{P(\text{三採陰})}  \\ &= \frac{P(\text{有病}) \times P(\text{陰} \mid \text{有病})  \times P(\text{陰} \mid \text{有病})  \times P(\text{陰} \mid \text{有病})}{P(\text{有病}) \times P(\text{陰} \mid \text{有病})^3 + P(\text{無病}) \times P(\text{陰} \mid \text{無病})^3} \\ &= \frac{\frac{3}{10} \times \left( \frac{2}{10} \right)^3}{\frac{3}{10} \times \left( \frac{2}{10} \right)^3 + \frac{7}{10} \times \left( \frac{6}{10} \right)^3} \\ &= \frac{1}{64}. \end{align*}$$

(請注意每次採檢都是相互獨立!)也就是算出$P = \frac{1}{8}, P' = \frac{1}{64}$,因此

$$\frac{P}{P'} = \frac{\frac{1}{8}}{\frac{1}{64}} = 8.$$

選(2)。

==廣告==

我早在這次考前就不斷地叮嚀我的學生們要注意所謂「n採陰/陽」的問題,他們回來補習班都說都有想起我的耳提面命。去年5月5日教貝氏定理時,備課時閱讀了南一版的教科書,裡頭談到了毒品二採陽的問題,當時我上課就更進「二」步,額外教了三採陽與四採陽的計算。因此這回猜題命中除了幸運,也是平時辛勤備課的成果!

沒有留言:

張貼留言