==問題==
(譯文)
設可微函數f:R→R滿足f(0)=1且對於任意實數x,y有
f(x+y)=f(x)f′(y)+f′(x)f(y).
試求出lnf(4)之值。
(原文)
Let f:R→R be a differentiable function with f(0)=1 and satisfying the equation
f(x+y)=f(x)f′(y)+f′(x)f(y)for allx,y∈R.
Then the value of lnf(4) is .
==解答==
(1∘)
f(0)=f(0+0)=f(0)f′(0)+f′(0)f(0)⇒f(0)=2f(0)f′(0)⇒1=2⋅1⋅f′(0)⇒f′(0)=12.
(2∘)
f(x)=f(0+x)=f(0)f′(x)+f′(0)f(x)=1⋅y′+12y⇒y=y′+12y⇒y′=12y⇒y=e12x+C.
x=0代入,得
1=e12⋅0+C.
故C=0,即
y=e12x.
所以
lnf(4)=lne12⋅4=lne2=2.
==評論==
輕而易舉
沒有留言:
張貼留言