2016年11月10日 星期四

[翻譯]Arthur Cayley,矩陣理論紀要(A Memoir on the Theory of Matrices),part: 4

I obtain the remarkable theorem that any matrix whatever satisfies an algebraical equation of its own order, the coefficient of the highest power being unity, and those of the other powers functions of terms of the matrix, the last coefficeint being in fact the determinant; the rule for the formation of this equation may be stated in the following condensed form, which will be intelligible after a perusal of the memoir, viz. the determinant, formed out of the matrix diminished by the matrix considered as a single quantity involving the matrix unity, will be equal to zero.

我發現了一個特別的定理,可以對任何一個矩陣(方陣)求得其代入後會成立的一條代數方程式,此方程式中最高次項的係數為1,其他次數的項的係數概由矩陣的元素所構成,而最後的常數項則是矩陣的行列式;推導出此方程式的方法或可概述如下,將原來所考慮的矩陣減去一個我們視為單變(未知)量的矩陣(與單位矩陣相關)後,計算所得矩陣的行列式,並令其為0。讀者在閱讀完本備忘錄後將會清楚地理解此推導方法。

沒有留言:

張貼留言