==問題==
計算積分∫π2−π2sin2x1+2xdx。
(1) π8
(2) π2
(3) 4π
(4) π4
==答案==
(4)==解答==
∫π2−π2sin2x1+2xdx=∫π20sin2x1+2xdx+∫0−π2sin2x1+2xdx=∫π20sin2x1+2xdx+∫0π2sin2(−t)1+2−t(−1)dt[x:−π2→0,t=−x,t:π2→0]=∫π20sin2x1+2xdx+∫π20sin2x1+2−xdx=∫π20sin2x1+2xdx+∫π202x⋅sin2x2x+1dx=∫π20sin2x(1+2x)1+2xdx=∫π20sin2xdx=∫π201−cos2x2dx=12[x−12sin2x]π20=12[(π2−12sinπ)−(0−0)]=π4.
(解答結束)
沒有留言:
張貼留言