Loading [MathJax]/jax/output/HTML-CSS/jax.js

2018年1月18日 星期四

2018-01-18:103學測,選填F,平面拼鋪問題

=問題=

一個房間的地面是由12個正方形所組成,如圖。
今想用長方形瓷磚舖滿地面,已知每一塊長方形瓷磚可以覆蓋兩個相鄰的正方形,即
則用6塊瓷磚舖滿房間地面的方法有多少種?
[103,學測,選填F]

=解法=

定義
為第I型磁磚;
為第II型磁磚。

觀察所要鋪設的區域,設左下角的兩塊為A和B,如圖所示。

A和B覆蓋的情況有2種可能,如圖所示。

如果是
那麼只要考慮上半部即可。

假定使用了x個第I型、y個第II型。那麼由橫向的個數可得方程式
2x+y=5.
討論此方程式的整數解有:(x,y)=(0,5),(1,3),(2,1)

對於(x,y)=(0,5),此時的拼貼方式有5!5!=1種。如圖所示。
對於(x,y)=(1,3),此時的拼貼方式有4!3!=4種。如圖所示。
對於(x,y)=(2,1),此時的拼貼方式有3!2!=3種。如圖所示。
綜合上述,如果A和B係由第I型磁磚所覆蓋,那麼總共有1+4+3=8種拼鋪方法。

如果是
那麼左半部必定是如下拼鋪
此時只要討論右半部即可。

假定使用了x個第I型、y個第II型。那麼由橫向的個數可得方程式
2x+y=3.
討論此方程式的整數解有:(x,y)=(0,3),(1,1)

對於(x,y)=(0,3),此時的拼貼方式有3!3!=1種。如圖所示。
對於(x,y)=(1,1),此時的拼貼方式有2!=2種。如圖所示。
綜合上述,如果A和B係由第II型磁磚所覆蓋,那麼總共有1+2=3種拼鋪方法。

我們必須要留心,以上所列舉出的拼鋪方式,是否有滿足題目所限定的「用6塊瓷磚」。而我們的答案是沒問題的。

所以本題答案為8+3=11種。


沒有留言:

張貼留言